Complex Geometry: Exercise Set 6

Exercise 1

Let M be a real 4-manifold and let $\sigma \in \mathcal{A}^2_{\mathbb{C}}(M)$ be closed, with $\sigma \wedge \sigma = 0$ and $\sigma \wedge \bar{\sigma}$ everywhere nonvanishing. Show that M admits a unique complex structure such that σ is a holomorphic 2-form. (Hint: What should $T^{0,1}M$ be?)

Exercise 2

(These two should have been assigned a while ago, but better late than never.)

- 1. Suppose M is an oriented Riemannian manifold of dimension n. Verify the assertion from class that $\star^2 = (-1)^{k(n-k)}$ acting on $\mathcal{A}^k(M)$.
- 2. If M = X is complex, so n = 2m, show that $\star^2 = (-1)^k$ acting on $\mathcal{A}^k(X)$.

Exercise 3

- 1. Verify by hand that the Kähler identities hold on \mathbb{C}^m .
- 2. Verify that the Kähler identities do not hold for the Hermitian metric on \mathbb{C}^2 with fundamental form $\omega = idz_1 \wedge d\bar{z}_1 + i(|z_1|^2 + 1)dz_2 \wedge d\bar{z}_2$. (For example, try computing $[\partial, L]$.)

Exercise 4

Suppose X is a compact Kähler manifold, of dimension n.

- 1. Show that the Kähler form ω is harmonic.
- 2. Show that holomorphic top-forms on X are harmonic, and harmonic (n,0)-forms are holomorphic. (Note that this means the space of harmonic (n,0)-forms on X is actually independent of the Kähler metric we choose.)
- 3. Show that any two cohomologous Kähler forms ω , ω' are related by $\omega = \omega' + i\partial \bar{\partial} f$ for some real function f.

Exercise 5

Suppose X is complex. Verify the assertion from class that if ω and ω' are the Kähler forms for some Kähler metrics on X, then $a\omega + b\omega'$ is too, for any a, b > 0.

(This implies that the space of ω corresponding to Kähler metrics forms a convex cone in $H^{1,1}(X,\mathbb{R})$, called the "Kähler cone." In fact the Kähler cone is open in $H^{1,1}(X,\mathbb{R})$; this should seem plausible since the condition of positivity is an open condition. Of course, the Kähler cone may be empty.)

Exercise 6

A closed 2-form ω on a C^{∞} manifold M of dimension 2m is called a *symplectic structure* if ω is closed and nondegenerate at every point.

- 1. Show that a compact symplectic manifold has $b_{2k} \ge 1$ for $0 \le k \le m$. (Hint: show that ω^m is not exact.)
- 2. Show that Kähler manifolds carry natural symplectic structures.